Inconel 718



Inconel 718

L'INCONEL 718 è una lega di nichel resistente ad alte temperature e corrosione.
Questo tipo di materiale è caratterizzato da un' alta resistenza all'usura ed alla rottura, produce parti finite che possono vantare ottima tolleranza a stress mecccanici ed una resistenza termica fino a 980°C.
Il materiale è è ideale per applicazioni ad alte temperatura come parti di turbine a gas ed impianti industriali oltre che per applicazioni criogeniche. Il pezzo in INCONEL 718 può essere lavorato tramite saldatura, sottoposto a processo di elettroerosione a filo, micropallinatura ed essere lucidato o rivestito se necessario. Può anche essere sottoposto a trattamenti termici come la tempra per migliorare le proprietà meccaniche

Technical Data Test Method  
Typical achievable part accuracy, small parts - - - - - - - approx. ± 40 – 60 μm
Typical achievable part accuracy, large parts - - - - - - - approx. ± 0.2%
Min. wall thickness [1] - - - - - - - typ. 0.3 - 0.4 mm
typ. 0.012 – 0.016 inch
Surface roughness [2] after shot-peening - - - - - - - Ra 4 - 6.5 μm, Rz 20 - 50 μm
Surface roughness [2] after polishing - - - - - - - Rz up to < 0.5 μm
Physical and Chemical properties of parts Test Method  
Material composition - - - - - - - Ni (50 - 55 wt-%)
Cr (17.0 - 21.0 wt-%)
Nb (4.75 - 5.5 wt-%)
Mo (2.8 - 3.3 wt-%)
Ti (0.65 - 1.15 wt-%)
Al (0.20 - 0.80 wt-%)
Co (≤ 1.0 wt-%)
Cu (≤ 0.3 wt-%)
C (≤ 0.08 wt-%)
Si, Mn (each ≤ 0.35 wt-%)
P, S (each ≤ 0.015 wt-%)
B (≤ 0.006 wt-%)
Fe (balance)
Relative density - - - - - - - approx. 100 %
Density - - - - - - - approx. 8.15 g/cm3
Mechanical properties of parts at 20°C (68°F) As Built Heat treated per AMS 5662 [3] Heat treated per AMS 5664 [4]
Tensile strength [5] in horizontal direction (XY) typ. 1060 ± 50 MPa
(154 ± 7 ksi)
- - - - - - - - - - - - - -
Tensile strength [5] in vertical direction (Z) typ. 980 ± 50 MPa
(142 ± 7 ksi)
min. 1241 MPa (180 ksi)
typ. 1400 ± 100 MPa
(203 ± 15 ksi)
min. 1241 MPa (180 ksi)
typ. 1380 ± 100 MPa
(200 ± 15 ksi)
Yield strength (Rp 0.2 %) [5] in horizontal direction (XY) typ. 780 ± 50 MPa
(113 ± 7 ksi)
- - - - - - - - - - - - - -
Yield strength (Rp 0.2 %) [5] in vertical direction (Z) typ. 634 ± 50 MPa
(92 ± 7 ksi)
min. 1034 MPa (150 ksi)
typ. 1150 ± 100 MPa
(167 ± 15 ksi)
min. 1034 MPa (150 ksi)
typ. 1240 ± 100 MPa
(180 ± 15 ksi)
Modulus of elasticity [5] in horizontal direction (XY) typ. 160 ± 20 GPa
(23 ± 3 Msi)
- - - - - - - - - - - - - -
Modulus of elasticity [5] in vertical direction (Z) - - - - - - - 170 ± 20 GPa
24.7 ± 3 Msi
170 ± 20 GPa
24.7 ± 3 Msi
Elongation at break [5] in vertical direction (XY) typ. (27 ± 5) % - - - - - - - - - - - - - -
Elongation at break [5] in vertical direction (Z) typ. (31 ± 5) % min. 12 %
typ. (15 ± 3) %
min. 12 %
typ. (18 ± 5) %
Hardness [6] approx. 30 HRC
approx. 287 HB
approx. 47 HRC
approx. 446 HB
approx. 43 HRC
approx. 400 HB
Mechanical properties of parts at high temperature (649°C, 1200°F) As Built Heat treated per AMS 5662 [3] Heat treated per AMS 5664 [4]
Tensile strength (Rm) [7] in vertical direction (Z) - - - - - - - min. 965 MPa (140 ksi)
typ. 1170 ± 50 MPa
(170 ± 7 ksi)
typ. 1210 ± 50 MPa
(175 ± 7 ksi)
Yield strength (Rp 0.2 %) [7] in vertical direction (Z) - - - - - - - min. 862 MPa (125 ksi)
typ. 970 ± 50 MPa
(141 ± 7 ksi)
typ. 1010 ± 50 MPa
(146 ± 7 ksi)
Elongation at break [7] in vertical direction (Z) - - - - - - - min. 6 %
typ. (16 ± 3) %
typ. (20 ± 3) %
Stress-Rupture Properties [8] in vertical direction (Z) - - - - - - - min. 23 hours at stress
level 689 MPa
(100 ksi)
- - - - - - -
    51 ± 5 hours
(final applied stress to
rupture 792.5 MPa / 115 ksi)
81 ± 10 hours
(final applied stress to
rupture 861.5 MPa / 125 ksi)
Thermal properties of parts Test Method Heat treated per AMS 5662
Coefficient of thermal expansion over 25 - 200 °C (36 - 390 °F) - - - - - - - approx. 12.5 - 13.0 x 10-6 m/m°C
Coefficient of thermal expansion over 25 - 750 °C (36 - 930 °F) - - - - - - - approx. 16.6 - 17.2 x 10-6 m/m°C
Maximum operating temperature for parts under load - - - - - - - approx. 650 °C
approx. 1200 °F
Oxidation resistance up to - - - - - - - 980 °C
1800 °F
Other Available Colors
 
Light Gray

[1] Mechanical stability is dependent on geometry (wall height etc.) and application#
[2] Due to the layerwise building, the surface structure depends strongly on the orientation of the surface, for example sloping and curved surfaces exhibit a stair-step effect. The values also depend on the measurement method used. The values quoted here given an indication of what can be expected for horizontal (up-facing) or vertical surfaces.
[3] Heat treatment procedure per AMS 5662: 1. Solution Anneal at 980 °C (1800 °F ) for 1 hour, air (/argon) cool. 2. Ageing treatment; hold at 720 °C (1330 °F ) 8 hours, furnace cool to 620 °C (1150 °F ) in 2 hours, hold at 620 °C (1150 °F ) 8 hours, air (/argon) cool.
[4] Heat treatment procedure per AMS 5664: 1. Solution Anneal at 1065 °C (1950 °F ) for 1 hour, air (/argon) cool. 2. Ageing treatment; hold at 760 °C (1400 °F ) 10 hours, furnace cool to 650 °C (1200 °F ) in 2 hours, hold at 650 °C (1200 °F ) 8 hours, air (/argon) cool
[5] Tensile testing according to ISO 6892-1:2009 (B) Annex D, proportional test pieces, diameter of the neck area 5 mm (0.2 inch) , original gauge length 25 mm (1 inch).
[6] Rockwell C (HRC) hardness measurement according to EN ISO 6508-1 on polished surface. Note that measured hardness can vary significantly depending on how the specimen has been prepared.
[7] Elevated temperature tensile testing at 649 °C (1200 °F) in accordance with EN 10002-5 (92)
[8] Testing at 649 °C (1200 °F) in accordance with ASTM E139 (2006), smooth specimens. Test method as described in AMS 5662 (3.5.1.2.3.3): “The load required to produce an initial axial stress of 689 MPa (100 ksi) shall be used to rupture or for 23 hours, whichever occurs first. After the 23 hours and at intervals of 8 hours minimum, thereafter, the stress shall be increased in increments of 34.5 MPa (5 ksi).”
The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes.
End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, etc. Actual values will vary with build conditions.
Product specifications are subject to change without notice.
The performance characteristics of these materials may vary according to application, operating conditions, or end use. Each user is responsible for determining that the material is safe, lawful and technical suitable for the intended laws and regulations. Zare makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.
All Trademarks included in this document are property of the respective owner